Primer on Superconducting Radiofrequency Cavities

Daniel Bowring

Fermi National Accelerator Laboratory

August 25, 2015

Apologia

There is far too much material here than can be covered in a 30-minute talk. For more, you can refer to:

 the US Particle Accelerator School's course material:

http://uspas.fnal.gov

- RF Superconductivity for Accelerators by Padamsee, Knobloch, and Hays, Wiley-VCH, 2008; and
- Introduction to Superconductivity by M. Tinkham, Dover, 2004.

Furthermore, this audience is very diverse. My talk will be completely new to some of you and old news to others.

Overview

- The basics
- Superconducting RF for accelerators
- What do we mean when we talk about films?
- "The Real World": Fabrication & challenges

1. The Basics

Basic phenomenology and the London equations

Start with a two-fluid model for conduction electrons: $n = n_s + n_n$. Drude-Lorentz electron motion in a metal:

$$m(\dot{\mathbf{v}} + \mathbf{v}/\tau) = e\mathbf{E}.$$

 $\tau \to \infty$ for a perfect conductor. $\mathbf{J_s} = n_s e \mathbf{v}$, so

$$\mathbf{E} = \frac{\partial}{\partial t} \left(\frac{m}{n_{\rm s} e^2} \mathbf{J}_{\rm s} \right). \tag{1}$$

Taking the curl,

$$\mathbf{h} = -c\nabla \times \left(\frac{m}{n_{\rm s}e^2}\mathbf{J}_{\rm s}\right). \tag{2}$$

And combining (2) with Ohm's law gives

$$\nabla^2 \mathbf{h} = \frac{1}{\sqrt{2}} \mathbf{h}.$$

This is a description of the Meissner effect.

$$\nabla^2 \mathbf{h} = \frac{1}{\sqrt{2}} \mathbf{h}$$

so external fields are screened from the superconductor as

$$h(z) = h_{\rm ext} e^{-z/\lambda}$$

for 1D, anyway. Empirically,

$$\lambda(T) \approx \frac{\lambda(T=0)}{\sqrt{1-(T/T_c)^4}}.$$

Of course, the London equations are not the whole story.

How to explain the *phase transition*?

- $C = T \frac{\partial S}{\partial T}$
- Discontinuity in C at critical temperature, characteristic of a secord-order phase transition.

"Isotope effect" suggests the lattice structure matters.

- E. Maxwell,
 "Superconductivity of the isotopes of tin", Phys. Rev.
 86, 235 (1952).
- $M^{0.5}T_c = \text{constant}$.

Type-I vs Type-II Superconductors

- $0 < H < H_{c1}$: Meissner state
- $H_{c1} < H < H_{c2}$: vortex / Abrikosov state

2. SRF for Accelerators

Why SRF for accelerators?

Normal-conducting surface resistance

$$R_{\rm s} = \sqrt{\frac{\mu_0 \omega}{2\sigma}}$$

- $\sigma_{\rm Cu} \approx 5.8 \times 10^7 \; {\rm S/m}$
- Pick f = 1.3 GHz
- $R_{\rm s}\sim 10~{\rm m}\Omega$
- Removing MW of dissipated power from Cu structures is a difficult problem at CW!

Superconducting surface resistance (Nb)

$$R_{\rm s} \approx 2 \times 10^{-4} \left(\frac{f[{
m MHz}]}{1500} \right)^2 \frac{1}{T} e^{-17.7/T} + R_{
m res}$$

- $R_{
 m res} \sim 10^{-8}~\Omega$ for niobium
- $R_{\rm s} \sim 10^{-6} \ \Omega$
- Much less dissipative than Cu, of course.
- SRF is efficient, even when accounting for LHe refrigeration.

Why Nb for SRF?

Consider elemental superconductors.

Material	$T_{\rm c}$ (K)	H_c (mT)	H_{c1} (mT)	H_{c2} (mT)
Pb	7.2	80	n/a	n/a
Nb	9.2	200	170	400

- Nb has highest T_c and H_{c1} of the elemental superconductors.
- It has a relatively low H_{c2} .
- It is readily available in bulk and formable.

3. Superconductivity in Films

 Nb cavities arguably reaching their technical performance limits.

- Nb cavities arguably reaching their technical performance limits.
- Nb is a great superconductor but a poor thermal conductor.
 How to move cavity heat efficiently into LHe?

- Nb cavities arguably reaching their technical performance limits.
- Nb is a great superconductor but a poor thermal conductor. How to move cavity heat efficiently into LHe?
- Compound superconductors may have higher T_c, H_{c1}, etc.
 MgB₂, e.g., is not available in bulk for traditional cavity forming, machining.

- Nb cavities arguably reaching their technical performance limits.
- Nb is a great superconductor but a poor thermal conductor. How to move cavity heat efficiently into LHe?
- Compound superconductors may have higher T_c, H_{c1}, etc.
 MgB₂, e.g., is not available in bulk for traditional cavity forming, machining.
- Cu is cheaper by an order of magnitude.

Thermodynamic critical field in bulk vs. film

- \bullet Ginzburg-Landau theory (coupled, nonlinear PDEs) describes pseudowavefunction ψ describing SC charge carrier density.
- Appropriate gauge choice (London gauge, $A_{\parallel} = \int_0^x h(x') dx' \approx Hx$) and thin-film boundary conditions $(d < \lambda, \text{ etc.})$ yields Gibbs free energy $G(|\phi|^2)$.
- Punchline:

$$H_{c\parallel} = \sqrt{24}H_c\frac{\lambda}{d}$$

4. "The Real World": Fabrication & Challenges

How thin is too thin?

For $d < \lambda$, Ginzburg-Landau gives

$$H_{c\parallel} = \sqrt{24}H_c\frac{\lambda}{d}$$
.

So *on paper* you can "win" by minimizing *d*. In practice, and especially on large surfaces, you will encounter problems with film adhesion and uniformity.

How thin is too thin?

For $d < \lambda$, Ginzburg-Landau gives

$$H_{c\parallel} = \sqrt{24}H_c\frac{\lambda}{d}.$$

So *on paper* you can "win" by minimizing *d*. In practice, and especially on large surfaces, you will encounter problems with film adhesion and uniformity.

Adhesion: Film/substrate interface must be managed carefully.

How thin is too thin?

For $d < \lambda$, Ginzburg-Landau gives

$$H_{c\parallel} = \sqrt{24}H_c\frac{\lambda}{d}.$$

So *on paper* you can "win" by minimizing *d*. In practice, and especially on large surfaces, you will encounter problems with film adhesion and uniformity.

Adhesion: Film/substrate interface must be managed carefully. Uniformity: Lattice mismatch, internal stress relieved as grains grow. "Pinholes" are also a concern:

Magnetron sputtering: prior art

G. Cavallari *et al.*, "Superconducting cavities for the LEP energy upgrade", Proc. PAC'93, Washington DC, 1993.

Figure : $Q_0/10^9$ vs $E_{\rm acc}$ (MV/m), bulk Nb.

Figure : $Q_0/10^9$ vs $E_{\rm acc}$ (MV/m), Nb on Cu (best & worst).

- 352 MHz, elliptical SRF cavities
- Spec to vendor: $Q_0 \ge 4 \times 10^9$ at 6 MV/m.
- Goal to reduce material costs, improve conductivity to LHe bath.

Magnetron sputtering: current challenges

Figure: G. Wu et al., "Energetic deposition in vacuum", 10th Workshop on RF Superconductivity, 2001, Tsukuba, Japan.

- Adatom mobility is limited. Cu substrates cannot be heated to temperatures that would help Nb mobility.
- ullet Low adatom mobility o columnar films. Defects more likely.
- Process gas can be trapped in film, introducing impurities.

High-energy film deposition

Film quality can be improved by adding energy to adatoms.

- Bias sputtering
- Plasma arc
- Electron-cyclotron resonance
- High-power impulse magnetron sputtering

Note also a distinction between energetic *condensation* (for improved surface mobility) and energetic *deposition* (to implant film material under the substrate surface).

Bias sputtering

Insert grids between cathode & anode, bias to control incident ion energy.

Figure: W. Venturini Delsolaro, Proc. SRF2013, Paris, France 2013.

Quarter-wave resonators for HIE-ISOLDE coated (Nb/Cu) via bias sputtering.

Cathodic arc deposition

- Plasma forms at "cathode spots" (non-stationary, high current density).
- Vacuum arc discharge permits UHV base pressures.
- Biasing grid + substrate allows some control over ion energies, angle of incidence on substrate.

Figure: M. Krishnan, PRST-AB **15**, 032001 (2012).

Electron-cyclotron resonance

- How can we eliminate process gas from energetic deposition?
- Nb neutrals generated via e-beam evaporation (system operates in high vacuum)
- Waveguide supplies RF
- Electrons in strong field undergo energetic cyclotron motion, ionizing Nb neutrals.
- Deposition energy \sim 100 eV.

Figure: A.-M. Valente *et al.*, Proc. EPAC 2004, Lucerne, Switzerland.

High-power impulse magnetron sputtering (HiPIMS)

- Power at magnetron surface is pulsed to achieve much higher power densities than conventional DC magnetron sputtering.
- Duty factor $\sim 1\%$.
- Much higher ion concentrations; the high power density allows for self-sputtering.

A. Anders et al., Proc. SRF2011, Chicago IL.

the ion energy and ion impact angle.

A. Gurevich, Appl. Phys. Lett. 88, 1 (2006).

24

- Multilayers screen bulk from applied B
- Vortex free energy modified, increases H_{c1} .
- I grabbed these plots from my thesis. His original paper may be more clear.

Limitations of this approach

- Thick films have a *lower* free energy gradient than thin films of equivalent material.
- Increasing layers starts to create problems with thermal conductivity.
- Sam Posen's talk (next) will also address this.

frame

We have some experience at Fermilab with RF in strong magnetic fields. Contact me any time for more information. You also have some local experts to contact.